ZENTRUM FÜR NERVENHEILKUNDE DEUTSCHE FORSCHUNGSANSTALT FÜR PSYCHIATRIE ## A year in review- Endocrinology MAX-PLANCK-INSTITUT FÜR PSYCHIATRIE **Matthias Auer** Max Planck Institute of Psychiatry RG Clinical Neuroendocrinology Munich, Germany mauer@psych.mpg.de # Effects of Three Different Testosterone Formulations in Female-to-Male Transsexual Persons Carla Pelusi, MD,* Antonietta Costantino, PhD,† Valentina Martelli, MD,† Martina Lambertini, MD,† Alberto Bazzocchi, MD, PhD,^{‡,§} Federico Ponti, MD,[§] Giuseppe Battista, MD,[§] Stefano Venturoli, MD,† and Maria C. Meriggiola, MD, PhD[†] | | Groups | Baseline | Week 54 | GLM analysis | | | Groups | Baseline | Week 30 | Week 54 | GLM analysis | | |--|--|---|---|---|---------------------------------------|-------------------------------|-------------------|--|--|--|------------------------------|-----------------------| | | | | Posttreatment | P value vs. posttreatment | P value vs. g | оир | | | Posttreatment | Posttreatment | P value vs.
posttreatment | P value vs.
groups | | LH (IU/L) | TD
T-gel
TU | 7.3 (3.5–11.2)
12.8 (6.6–39.8)
5.8 (2.1–9.5) | 5.1 (1.9–8.3)
9.2 (4.5–13.9)
5.1 (2.0–8.1) | P= 0.289 | P= 0.160 | Glucose (mg/dL) | TD
T-gel | 87.3 (82.2–92.4)
84.0 (78.7–89.3) | 81.2 (75.6–86.7)
81.5 (75.7–87.3) | 82.0 (76.9–87.0)
80.0 (74.7–85.3) | P = 0.019 | P = 0.749 | | FSH (IU/L) | TD
T-gel
TU | 6.2 (4.9-8.1)
6.1 (3.4-8.9)
4.6 (2.8-6-4) | 5.1 (3.8–6.4)
5.6 (3.7–7.5)
5.3 (4.1–6.6) | P= 0.700 | P= 0.538 | Insulin (mcu/mL) | TU
TD
T-gel | 83.1 (77.9–88.2)
6.04 (4.88–7.18)
5.71 (4.44–6.98) | 81.7 (76.1–87.2)
5.52 (4.14–6.91)
6.61 (5.08–8.14) | 80.1 (75.0–85.1)
5.21 (3.93–6.49)
6.10 (4.68–7.52) | P= 0.917 | P = 0.41 | | E (pg/mL) | TD
T-gel
TU | 102.9 (61.4-144.5)
167.
190. | 70.6 (28.0–113.2) | P= 0.002 | P= 0.502 | | TU | 5.82 (46.68–6.98) | 4.84 (3.45–6.22) | 5.86 (4.58–7.15)
-1.16)
-1.47) | P= 0.62 | P = 0.28 | | PRL (ng/mL) | TD
T-gel
TU | No differences between intramuscular Tundesangate T (1.38) | | | | | | P = 0.317 | | | | | | T (ng/mL) | TD
T-gel
TU | o.e
o.a
en | anthate, | transderm | al T w | ith regard | to ar | nthropo | metric o | 87.7)
-100.1)
-105.8) | P= 0.089 | P = 0.206 | | SHBG (nmol/L) | TD
T-gel
TU | 65.
65.
60. | | biod | chemi | ical variabl | es. | | | -107.9)
-0.85)
-0.93) | P= 0.322 | P = 0.072 | | cFT (nmol/L) | TD
T-gel
TU | 0.0
0.01 (0.00-0.01)
0.01 (0.00-0.01) | 0.34 (0.12-0.57)
0.28 (0.06-0.49) | | | Body weight (kg) | TD
T-gel
TU | 57.8 (51.2–64.4)
67.3 (59.7–74.9) | 61.8 (55.2–68.5)
69.6 (61.9–77.2) | -0.85)
61.3 (55.0–67.5)
68.7 (61.5–75.9) | P< 0.0005 | P=0.063 | | Data are expressed a
cFT - calculated free
hormone; n.s not si
tosterone undecanoal | e testosterone; (
ignificant; PRL = | t)
CI = confidence interval; E = e:
protectir; SHBG = sex hormone | stradiot; FSH – folicle-stimul
o-binding globulin; T – testost | ating hormone; GLM - general fineer
erone; TD - testoviron depot; T-gel - te | nodel; LH – lute
stasterone get TU | BMI (kg/m²)
nizin
- te: | TD
T-gel
TU | 59.6 (52.3–66.8)
22.3 (19.9–24.6)
23.9 (21.2–26.6)
22.1 (19.5–24.6) | 60.0 (52.7-67.3)
23.8 (21.5-26.1)
24.6 (21.9-27.3)
22.2 (19.7-24.8) | 60.5 (53.7-67.4)
23.6 (21.4-25.8)
24.3 (21.8-26.9)
22.4 (20.0-24.8) | P < 0.0005 | P = 0.058 | #### Short- and Long-Term Clinical Skin Effects of Testosterone Treatment in Trans Men Katrien Wierckx, MD, 1* Fleur Van de Peer, 1* Evelien Verhaeghe, MD, PhD, 1* David Dedecker, 2* Eva Van Caenegem, MD, 4* Kaatje Toye, 2* Jean Marc Kaufman, MD, PhD, 2* and Guy T'Sjoen, MD, PhD *Department of Endocrinology, Ghent University Hospital, Ghent, Belgium; *Department of Dermatology, Ghent University Hospital, Ghent, Belgium; *Department of Sexology and Gender Problems, Ghent University Hospital, Ghent, Belgium #### Acne Figure 1 Ferriman and Gallwey (F&G) scores during T treatment. Data are presented as the median F&G score; error bars represent 95% confidence intervals. Long-term T treatment represents median F&G scores from the cross-sectional study. P value results from ANOVA repeated measures analyses. **Body hair** J. Sex. Med. 2014 Breast Cancer Res Treat DOI 10.1007/s10549-014-3213-2 #### EPIDEMIOLOGY Incidence of breast cancer in a cohort of 5,135 transgender veterans George R. Brown · Kenneth T. Jones - •N = 3,556 (MtF), N = 1,579 (FtM) - •Cases of breast-Ca. FTM: 7 and MTF: 3 - •Incidence **20.0/100,000** patient years - No difference in comparison to age (birth) sex-matched general population No evidence for increase in breast cancer risk under CHT in trans men or trans women #### ORIGINAL RESEARCH—ONCO # Breast Cancer Development in Transsexual Subjects Receiving Cross-Sex Hormone Treatment Louis J. Gooren, MD, PhD, $^{+}$ Michael A.A. van Trotsenburg, MD, PhD, ‡ Erik J. Giltay, MD, PhD, $^{\$}$ and Paul J. van Diest, MD, PhD $^{\$}$ *Emeritus VU University Medical Center, Amsterdam, The Netherlands; *Androconsult, Chiang Mai, Thailand; *VU University Medical Center, Amsterdam, The Netherlands; *Department of Psychiatry, LUMC, Leiden, The Netherlands; *Department of Pathology, University Medical Center, Utrecht, The Netherlands DOI: 10.1111/jsm.12319 - N = 2,307 (MtF), N = 795 (FtM) - •Cases of breast-Ca. FTM: 2 und MTF: 1 - •MtF: Incidence 4.1 / 100,000 patient years - No difference in comparison to age (birth) sex-matched general population - •Incidence 5.9 / 100,000 patient years - Lower incidence than age-matched women, same incidence as age matched men # ORIGINAL RESEARCH—TRANSGENDER AND GENDER NONCONFORMANCE Hormonal and Surgical Treatment in Trans-Women with BRCA1 Mutations: A Controversial Topic Britt Colebunders MD,* Guy T'Sjoen MD, PhD,* Steven Weyers MD, PhD* and Stan Monstrey MD, PhD* - > So far no published case of BRCA1 positivity and breast cancer in gender dysphoria - Men who are BRCA1-carriers have a 5.8% risk of developing breast cancer before the age of 70 (General population 0.1%) - There is also a **higher risk for developing prostate-cancer** - Women with BRCA1 mutations have a 78.3% risk to develop breast cancer before the age of 70 (General population 0.1%) - Commonly hormone-receptor-negative # **Central effects of cross-sex hormone treatment** OPEN & ACCESS Freely available online Effects of Androgen Deprivation on Cerebral Morphometry in Prostate Cancer Patients – An Exploratory Study Herta H. Chao^{1,2}*, Sien Hu³, Jaime S. Ide⁴, Edward Uchio⁵, Sheng Zhang³, Michal Rose^{1,2}, John Concato^{1,2,6}, Chiang-shan R. Li^{3,7,8} Shrinkage of brain volume in men treated with androgen deprivation for prostate cancer European Journal of Endocrinology (2006) 155 S107-S114 ISSN 0804-4643 # Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure Hilleke E Hulshoff Pol, Peggy T Cohen-Kettenis¹, Neeltje E M Van Haren, Jiska S Peper, Rachel G H Brans, Wiepke Cahn, Hugo G Schnack, Louis J G Gooren² and René S Kahn Decrease in brain volume in trans women following CSH Increase in brain volume in trans men following CSH #### SHORT COMMUNICATION # Cross-sex hormone treatment in male-to-female transsexual persons reduces serum brain-derived neurotrophic factor (BDNF) Johannes Fuss^{a,*}, Rainer Hellweg^b, Eva Van Caenegem^c, Peer Briken^a, Günter K. Stalla^d, Guy T'Sjoen^c, Matthias K. Auer^d Fig. 1 Serum BDNF is significantly lower after 12 month of cross-sex hormone treatment. Decrease in BDNF-levels in trans women following 12 months of CSH independent of lifestyle and changes in anthropometry. -> Direct effect on BDNF-release from thrombocytes? Eur Neuropsychopharmacol. 2014 #### ORIGINAL RESEARCH—TRANSGENDER AND GENDER NONCONFORMANCE Clinical Review: Breast Development in Trans Women Receiving Cross-Sex Hormones Katrien Wierckx, MD,* Louis Gooren, MD, PhD,† and Guy T'Sjoen, MD, PhD** • Breast growth starts 2-3 months following initiation of CRH and progresses up to 2 years #### Table 1 Studies concerning the effect of cross-sex hormone treatment on breast size in trans women | Center | Study design | Hormone treatment | N | Outcome | |---|------------------|--|----|---| | Department of Dermatology, New York
University, New York [15] | Case reports | Various estrogen treatments | 5 | Breast development | | Gender Clinic, University of Texas,
Medical Branch, Galvesion, Texas
[16] | Cross- sectional | EE 0.05-10 mg OD or
conjugated equine
estrogens (1.25-5 mg
OD) | 38 | Effect of EE vs. conjugated equine
estrogens on breast
hemicircumference
Effect of estrogen dose on breast
hemicircumference | | Gender Clinic, University of Texas,
Medical Branch, Galveston, Texas
[17] | Prospective | EE 0.05–10 mg OD or
conjugated equine
estrogens (1.25–10 mg
OD) 15% oral progestin
(mostly MPA 10 mg OD) | 60 | Time course of breast growth (breast
hemicircumference) Effect of ethinyl estradiol vs. conjugated equine estrogens on
breast hemicircumference Effect of estrogen dose on breast
hemicircumference Effect of progestin on breast
hemicircumference | less than A cups fol continuous CSH • 35% achieve A-cups No evidence that high doses of E2 or intake of progesterone affects final breast size - No differences between GnRH -analogues or antiandrogens - Progesterone does not induce proliferation (volume) of breast tissue but differentiation. | Department of Plastic and
Reconstructive Surgery, Academic
Hospital Vrije Universiteit,
Amsterdam, Netherlands [21] | Retrospective | EE 100 μg OD and CPA
100 mg OD | 359 | Percentage of trans persons that
underwent augmentation
mammoplasty | |--|----------------------------|--|-----|--| | Department of Medicine
University of Seville
Seville, Spain | Cross sectional | Various cross-sex hormone
treatments | 27 | Tanner stage | | Department of Obstetrics and
Gynaecology, Erlangen University
Hospital, Germany [22] | Prospective
(24 months) | Subcutaneous injection of
GnRH every 4 weeks and
estradiol valerate 6 mg
OD | 60 | Cup size
Percentage of trans persons that
planned to undergo augmentation
mammoplasty | | Department of Sexology and Gender
Problems, University Hospital Ghent,
Belgium [23] | Cross-sectional | CPA 50–100 mg OD;
various estrogen
treatments | 32 | Percentage of trans persons that
underwent augmentation | | Department of Medicine, St George's
hospital, London, United Kingdom
[13] | Retrospective | Various estrogen and
anti-androgen treatments | 165 | Predictive markers for mammoplesty
Type of estrogen and type of
ant-androgen | | | | | | | CPA - cyproterone acetate; EE - ethinyl estradiol; MPA - medroxyprogesterone acetate; OD - once daily # Cardiovascular disease in transsexual persons treated with cross-sex hormones: reversal of the traditional sex difference in cardiovascular disease pattern Louis J Gooren[†], Katrien Wierckx¹ and Erik J Giltay² #### Trans women Table 2 Short-term changes in metabolic and cardiovascular risk factors in MtoF transsexual persons. | Outcome variable | Observed changes | References | Effect on
cardiovascular morbi | | |--------------------------|--------------------|------------------|-----------------------------------|--| | Body composition | | | | | | Weight | Increase | (28, 40, 45, 66) | 1 | | | Visceral fat | Increase | (45) | ↑ (+/ | | | Total body fat | Increase | (28, 66) | 1 | | | Insulin metabolism | | | | | | Fasting glucose | No effect | (28, 40) | _ | | | Fasting insulin | Increase | (28, 40, 66) | 1 | | | Insulin sensitivity | Decrease | (28, 66) | 1 | | | Lipid spectrum | | | - | | | Total cholesterol | No effect | (28, 45, 66) | - | | | LDL cholesterol | No effect/increase | (28)/(66) | -/↓ | | | HDL cholesterol | Increase | (28, 66) | 1 | | | VLDL cholesterol | No effect | (28) | - | | | Triglycerides | Increase? | (40, 45) | † | | | Fish fatty acid (DHA) | Increase | (66) | 1 | | | Other CVD risk factors | | | | | | Heart rate | No effect | (40) | _ | | | Diastolic blood pressure | No effect/increase | (28)/(40) | -/↑ | | | Systolic blood pressure | No effect/increase | (28)/(40) | -/↑ 🦾 | | | Arterial stiffness | No effect | (40) | | | | Hemostasis/fibrinolysis | Increase | (22, 45) | 1 | | | Total homocysteine | Decrease | (48) | 1 | | | Inflammation markers | No effect/increase | (48)/(66) | -/↑ | | #### Trans men Table 3 Short-term changes in metabolic and cardiovascular risk factors in FtoM transsexual persons. | Outcome variable | Observed changes | References | Effect on cardiovascular
morbidity | | |--------------------------|---------------------------|-------------------|---------------------------------------|--| | Body composition | | | | | | Weight/BMI | No effect/increase | (28)/(40, 45, 66) | 1 | | | Visceral fat | Slight increase | (66) | 1 | | | Total body fat | No effect/increase | (28)/(66) | ↑ . | | | Insulin metabolism | | | | | | Fasting glucose | Decrease | (28, 40) | 1 | | | Fasting insulin | No effect | (28, 40, 66) | _ | | | Insulin sensitivity | No effect/slight decrease | (28)/(66) | -/↑ | | | Lipid spectrum | | | | | | Total cholesterol | No effect | (28, 48, 66) | - | | | LDL cholesterol | No effect | (28, 40, 48, 66) | - | | | HDL cholesterol | Decrease | (28, 40, 66) | ↑ (– | | | VLDL cholesterol | No effect | (28) | _ | | | Triglycerides | Increase | (40, 66) | 1 | | | Fish fatty acid (DHA) | Decrease | (66) | † | | | Other CVD risk factors | | | | | | Heart rate | _ | (40) | | | | Diastolic blood pressure | No effect | (28, 40, 66) | - | | | Systolic blood pressure | No effect/increase | (28, 40)/(66) | -/↑ | | | Arterial stiffness | No effect | (40) | _ | | | Hemostasis/fibrinolysis | No effect | (22, 45) | _ | | | Total homocysteine | Increase | (48) | 1 | | | Inflammation markers | Increase | (66) | † | | | Table 4 | Studies on cardiovascular er | idpoints in MtoF transsexuals con | npared with general | population or control group. | |---------|------------------------------|-----------------------------------|---------------------|------------------------------| | | | | | | | Reference | n | Follow-up | Treatment regimen | Outcome | | |-----------|-----|-----------------------------------|---|--|--| | (16) | 303 | Median duration HRT of 4.4 years | Ethinyl estradiol 100 μg/day and cyproterone acetate 100 mg/day | 45-fold increase in VT and/or PE | | | | | | | No increased cardiovascular morbidity
and mortality | | | (15) | 816 | Mean duration HRT of
9.5 years | Ethinyl estradiol 100 μg/day or
transdermal 17β-estradiol
100 μg/twice a week and
cyproterone acetate 100 mg/day | 20-fold increase in venous thrombosis
and/or pulmonary embolism | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | No increased cardiovascular morbidity
or mortality rate | | | (14) | 966 | Median duration HRT | Ethinyl estradiol 100 μg/day or | Higher mortality due to ischemic heart | | | (14) | 900 | of 18.5 years* | transdermal 17β-estradiol | disease; SMR 1.64 (1.43–1.87) | | | | | 01 10.5 years | 100 µg/twice a week and | disease, Sivily 1.04 (1.45–1.07) | | | | | | cyproterone acetate 100 mg/day | | | | | | | ,,p | Higher mortality due to CVD; SMR 2.11 | | | | | | | (1.32–3.21) in age group 40–64 years | | | (17) | 191 | Median time since SRS | Not specified | Higher mortality due to cardiovascular | | | | | of 9.1 years* | | disease compared with controls | | | (56) | 58 | | | norbidity | | | | | | and the second second | ol male and | | | (27) | 214 | Discoi | r dant change in clas | compared with | | | (27) | | | | · | | | | | cardiomet | abolic risk factors a | nd actua compared with | | | | | | | men | | | | | | cardiovascular risk | | | | | | Caralovascular 115K | | | | ## Mortality Table 5 Studies on c ol population. ### Trans men Trans women | Reference | n | Follow-up | Treatment regimen | Outcome | |-----------|-----|---|--|---| | (16) | 122 | Median duration HRT
of 4.4 years ^a | Testosterone esters 250 mg i.m.
every 2 weeks or testosterone
undecanoate 120–160 mg/day | No increased cardiovascular morbidity | | (15) | 293 | Mean duration HRT
of 8.2 years | Testosterone esters 250 mg i.m.
every 2 weeks or testosterone
undecanoate 160 mg/day | No increased cardiovascular morbidity
or mortality rate | | (14) | 365 | Median duration HRT
of 18.5 years ^a | Testosterone esters 250 mg i.m.
every 2 weeks or testosterone
undecanoate 160 mg/day | No increased cardiovascular
mortality rate | | (17) | 133 | Median time since SRS
was 9.1 years ^a | Not specified | Higher mortality due to cardiovascular
disease compared with controls | | (56) | 37 | Mean duration HRT of 4.9 ± 4.6 years | Different testosterone preparations | No difference in cardiovascular
morbidity compared with control
men and women | | (27) | 138 | Median duration HRT
of 6 years | Different testosterone preparations | No difference in cardiovascular
morbidity compared with control
men and women | | | | | | | # **Interpreting Laboratory Results in Trans Hormone Therapy** Tiffany K. Roberts, PhD, a Colleen S. Kraft, MD, Deborah French, PhD, Wuyang Vin Tangpricha, MD, PhD, Corinne R. Fantz, PhD **METHODS:** Laboratory dat from the medical records of patients on hormone there with **20 male** and **20 fema** subjects. What is a "normal" lab value in gender dysphoria with CSH? В Alkaline Phosphatase (ALP) С **CONCLUSIONS:** Preliminary data suggest that **new reference intervals** need to be established?